How softness sounds

What consumers want: Softness

2 Source: Lenzing customer survey, n 23

What is "softness"?

.....

What is Soft?

Dictionary:

Not hard or stiff

Smooth and producing agreeable sensations

Pleasant or comfortable: agreeable touch

Yielding readily to touch or pressure; easily penetrated, divided, or changed in shape

→ Subjective value; related to comfort

→ How to put it in numbers?

Relevant physical values

- Thickness
- Compression
- Bending
- Surface friction
- Roughness
- Shearing
- Thermal properties

Kawabata: for daily use too complicated

- Can measure up to 16 independent mechanical properties of a fabric
- FAST: 3 (simpler) instruments

Physical methods

Relevance:

Thickness Compression Bending Surface friction Roughness Shearing Thermal properties

Fabric Touch Tester FTT

Measured:

- Thickness
- Compression
- Bending
- Shearing
- Surface friction
- Roughness
- Thermal properties

Calculated:

- Active smoothness
- Softness
- Warmness

A new approach: Hear the Softness!

.....

New method: Tissue Softness Analyzer (TSA)

lower noise peak => smoother / softer

New method: Tissue Softness Analyzer (TSA)

...........

The lower the noise, the softer the fabric

Example1: Knitted fabric, repeated washing

Control: ring pull-through

Example 2: Woven fabric – method comparison

Fabric	Weight [g/m²]	Thickness [mm]
Cotton (CO)	131	0.42
Cotton/Modal (CO/CMD)	142	0.46
Modal (CMD)	141	0.32
Micromodal® (µCMD)	130	0.34
TENCEL® (CLY)	131	0.36
Viscose (CV)	143	0.35

Expert panel evaluation and FTT measurements were performed at University Gent within the European project "TOUCHÉ" Applied methods:

- Expert panel
- Non-expert panel

• FTT

- TSA
- Ring method
- Handle-o-meter
- Drape test

"Touché"*- Expert panel: Lenzing Modal® is the softest

- 10 expert assessors
- The fabrics were assigned scores between 1-10.

Softness: Lenzing Modal is superior

- 10 expert assessors
- The fabrics were assigned scores between 1-10.

Smoothness: FTT versus TSA

Similar ranking of the sample smoothness in panel, FTT and TSA

Softness: FTT versus TSA

CO/CMD appears "softer" in TSA: Reason: higher yarn twist => lower hairiness => lower noise

Sample preparation is essential

Drape, flexibility

Ranking depends on the physical process applied by the measurement method

Method comparison – Smoothness

	Best					Worst		
	Touché Panel	CMD µCMD	CLY CV		CO/CMD	CO		
	Non-expert 1	μCMD	CV	CMD	CLY	CO	CO/CMD	
	Non-expert 2	μCMD	CMD	CV	CLY	CO/CMD	CO	
-	Non-expert 3	CMD	CV	<mark>μCMD</mark>	CLY	CO/CMD	CO	
	Non-expert 4	μCMD	CMD	CV	CLY	CO/CMD	CO	
	Non-expert 5	μCMD	CLY	CV	CMD	CO/CMD	CO	
	Handle-o-meter	μCMD	CMD <mark>CV</mark>		CLY CO/CMD	C	0	
	Ring	μCMD	CV		CMDCLY	CO/CMD		
	TS750	μCMD	CLY	CM DC V		CO	CO/CMD	
	TSA HF	μCMD			CO/CMD	CO		
21	FTT	CMD µCMD	CLY		CV			

method comparison – Softness

Best					Worst		
	Touché expert Panel	µCMD	CMD CLY CO/CMD		CV	C	0
	Non-expert 1	μCMD	CV	CMD	CLY	CO	CO/CMD
	Non-expert 2	μCMD	CMD	CV	CLY	CO/CMD	CO
-	Non-expert 3	CMD	CV	μCMD	CLY	CO/CMD	CO
	Non-expert 4	μCMD	CMD	CV	CLY	CO/CMD	CO
	Non-expert 5	μCMD	CLY	CV	CMD	CO/CMD	CO
	Handle-o-meter	μCMD	C	MD <mark>CLY</mark>	CV	CO/CMD	CO
	Ring	μCMD	CV CMDCLY		CO/CMD		
	TS7	μCMD	CO/CMD	CV	CLY CMD		CO
	Drape	CV µCMD		CMD CLY		CO/CMD	CO
	TSA Hand Feel (HF) calculated	μCMD			CO/CMD	CO	
	FTT Total Hand (calculated)	<mark>µСМD</mark> СМD	CLY		CV	CO/C C	

Example 3 – Knitted fabric

Lenzing Modal® is permanently soft

- All hands and methods state: man-made cellulosics are softer then cotton
- Lenzing Modal® and Micromodal® are and the remain the softest

TSA makes softness talk

- Physical measurements are as different as hands
- TSA: Sound of softness
 - Practical
 - Fast
 - Reliable
- New Hand Feel (HF) value in development
 - Be part of it, send your fabrics collection

To keep in "touch"

Hear the softness! Send your fabric collection!

Back up

.....

TSA values

- TS750 at <2000 Hz expresses "felt smoothness/roughness", based on surface geometry/structure (creping/embossing, calendaring. Lower peak = smoother
- TS7 at 5000 7000 Hz expresses real softness based on the stiffness of single fibers, fiber bending strength, internal structure, micro/macro compressibility, softeners and other chemical agents. Lower peak = softer.
- D expresses the fabric stiffness, measured as penetration depth into the fabric, expressed in [mm/N]. The result is based on fiber stiffness and fiber type (short/long fibers), internal structure, chemicals, thickness/density, fabric weight, calendaring. Lower D value = higher stiffness.
- HF is a combination parameter for the hand feeling, which is calculated on the basis of the TSA measured values above and the fabric weight and thickness. The calculation algorithm of HF was optimized for tissue samples and does not necessarily express textile properties.

